
This paper introduces a method for segmention of the 
vocal-fold edges in temporal domain from laryngeal 
high-speed videoendoscopy (HSV). The method employs 
a pair of active contours (snakes), which deform within 
a series of kymographic images derived from the HSV 
data. By following a set of deformation rules, this pair 
of active contours converges to the desired boundaries 
of the glottis. The proposed method was tested on a 
dataset of 98 HSV samples, of which 96 were 
successfully segmented. The new method substantially 
outperforms existing methods. However, more precise 
analysis revealed that of the 96 successfully segmented 
HSV samples, 18 exhibited a fine error up to ±1 pixel,
and 78 samples exhibited errors exceeding a pixel. The 
large majority of the gross errors (76%) were due to 
problems near the posterior and anterior commissures, 
which warrants further investigation for improving the 
accuracy and reliability of the method.
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I. INTRODUCTION

Laryngeal high-speed videoendoscopy (HSV) contains 
unprecedented amount of information about the vibration 
of the vocal folds that is potentially clinically useful. 
However, navigating through the enormous amount of 
HSV data is difficult and impractical. In order for HSV to 
gain widespread clinical use, there is a need for image-
processing algorithms for automatic extraction of the 
relevant vocal-fold vibratory features. That is the long-
term purpose of this project.

This problem has been investigated in recent years. 
Yan et al. developed an algorithm to segment the glottis 
from HSV data by globally thresholding pixel intensities 
on a per-frame basis [1]. Lohscheller et al. developed an
algorithm that takes advantage of HSV's 3D structure by 
performing a modified 3D seeded region growing for 
segmentation of the glottis and post-processing for 
reconstruction of the vocal-fold boundaries [2]. However, 
such local image thresholding or region growing 
algorithms are usually sensitive to image homogeneity
and noise.

Active contours, or snakes, are deformable models that 
can dynamically converge towards the desired image 
features [3]. The deformation of a snake follows certain 

specified rules on the whole contour, which may make it 
more robust to image noise. A closed-loop snake has 
been used to analyze the PE-segment within HSV data
[4]. A pair of open-curve snakes has been applied to the 
right and left vocal folds to segment the glottis from 
videokymography [5]. A HSV movie can be represented 
in temporal domain as a digital kymography (DKG) 
playback [6]. Therefore, an attractive approach for HSV-
segmentation can be achieved by segmenting the glottis 
from all spatial-temporal kymographic images of HSV.

In this study, we employed a pair of open-curve snakes 
(right and left) on DKG images to segment the glottis, for 
which deformation rules enforce the temporal resolution 
of HSV. Fig. 1 illustrates two open-curve snakes, right 
and left, attracted to pixels with large gradient magnitude 
(aligned with the glottal boundaries), which is derived 
from DKG. In Fig. 1 (not drawn to scale) the white 
squares are the vertices, termed snaxels, which make up 
the right and left snakes. The white lines connecting the 
snaxels are spline segments. And the space between the 
vertical white lines denotes time.

Fig. 1: Snakes are attracted to the pixels with large 
magnitude of gradient within a kymographic image.

The proposed method exhibits the following merits 
over previous methods: (a) the snake convergence is 
facilitated due to the absence of complex geometries in 
kymographic images; (b) the deformation of the snakes 
can be optimized by using time-delayed discrete dynamic 
programming; (c) the temporal resolution of HSV helps 
constrain snake deformation since DKG images exhibit 
continuity along the time axis; (d) the method is robust to 
the disappearing glottis during the closing phase; (e) the 
initialization procedure is simple and scalable; and (f) the 
method segments the right and left vocal-fold edges 
concurrently, while maintaining separate left and right 
segmentation results.

II. METHOD

A. Snake -energy Minimization.

Energy Minimizing Splines. A snake is a spline 
deformed in the spatial domain of a digital image in order 
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to minimize an energy functional comprised of internal 
forces derived from the snake's shape, and external forces 
derived from image features [3]. A snake is 
parameterized by the vector v(s) = [x(s),y(s)], where 
s  [0,1], and seeks to minimize the following energy 
functional [3,7]:
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The internal force intE acting on snake v(s) is a soft 

constraint used to make the snake's shape smooth and is 
given by:
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Where v'(s) and v''(s) are the first and second derivatives,
respectively; α and β are two weights used to adjust the 
snakes elasticity and rigidity, respectively, which in turn 
influences the snake's shape. The image forces imageE

acting on the snake v(s), is a force that counter-balances 
the internal force 

intE , and makes the snake align with 

desirable image features. For example imageE can be:
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where I is the image gradient. By combining Eqs. (1) 
and (2) we obtain:
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Using the calculus of variations, Eq. (4) has a numerical 
solution that can be obtained in O(n) time [3]. By using 
specialized external force fields the convergence of 
snakes using the variational calculus framework can be 
significantly improved.

Snake Deformation Rules: In order to enhance 
convergence of the paired temporal snakes, three snake-
deformation rules are applied: (1) no closed loops are 
permitted in the right and left snakes (i.e. snaxels of right 
and left snakes are defined by the time axis of 
kymographic images and can only move up or down 
within a kymographic slice during deformation); (2) in 
the absence of glottal-edge information right and left 
snakes are attracted to each other (i.e. regions in the 
kymograms where the vocal folds are in contact); and (3) 
right and left snakes are not allowed to pass each other in 
the deformation.

Time-delayed Discrete Dynamic Programming. The 
variational calculus framework for snake-energy 
minimization uses higher-order derivatives in order to 
approximate an energy minimizing spline from discrete 
data. Hard constraints are typically non-differentiable; as 
a consequence numerical instability occurs. In order to 

overcome the instability of variational approaches, snake 
energy is minimized using discrete dynamic 
programming [7].

The discretization of the internal energy term of a 
snake given in Eq. (2), yields:
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where iv corresponds to the 
thi snaxel. By discretizing

Eq. (4) we obtain:
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which can be viewed as a discrete multistage decision-
making process, or better yet, a dynamic-programming 
problem [7].

Before dynamic programming can be applied, we
must make the observation of a correspondence between 
minimizing the total energy measure of a snake and the 
problem of minimizing a function of the form [7]:
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where each v is a state variable that can take m possible 
values. In the general case,
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Now, the dynamic programming solution involves 
generating a sequence of functions of one variable, 
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iiS (the optimal value function), where for obtaining 

each iS a minimization is performed over a single 

variable. For example, given the energy function shown 
in Eq. (8), with n = 4, we have:
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And in the general case [7],
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The discrete dynamic-programming solution for snake-
energy minimization has a O(nm2) memory requirement 
and O(nm3) theoretical complexity, where n is the total 
number of stages (number of snaxels) and m is the total 
number of decisions at a given stage (neighborhood size).



Fig. 2 gives insight to the dynamic programming 
solution for snake-energy minimization as a pair of 
temporal snakes deform within a glottal opening in a 
DKG image. The gray tiles of Fig. 2 represent the 
magnitude of the gradient, black tiles correspond to the 
snaxels of the right snake, black tiles with a dot 
correspond to snaxels from the left snake, and black tiles 
with a square correspond to snaxels where the right and 
left snake are overlapping. During the snake-deformation 
procedure snaxel movement is limited to a column-wise 
neighborhood, which prohibits the occurrence of closed 
loops (self intersections) in the right and left snakes and 
significantly reduces the search space needed for snake-
energy minimization.

Fig. 2: Snake energy is minimized by finding the optimal

state variable 1iv along the direction of the column.

B. Experimental Design.

DKG Snake Toolbox. In order to test the new method, a 
custom software, DKG Snake Toolbox, was built. It 
allows a user to scroll through the HSV and DKG frames, 
which are dynamically linked. After the user manually 
marks the anterior and posterior commissures, an initial 
DKG image is selected at the 50% anterior-posterior 
level. Then, a snake-initialization line is placed in the 
middle of the glottis, spanning through the time axis of 
the kymogram. The right and left snakes are deformed in 
order to segment the glottis. After the result is verified, 
the remaining DKG images are automatically segmented.

Preprocessing the HSVs. The laryngeal tissues being 
observed are covered with a superficial layer, the lamina 
propria, which is highly reflective due to hydration and/or 
mucus presence. In general, light reflections represent a 
significant problem for snakes, because they introduce 
spurious noise into the gradient maps governing the snake 
deformations. Through the duration of a HSV recording, 
glottal openings exhibit distinctly dark intensities. Pixels 
having intensity values higher than the median intensity 
value of the entire recording more than likely correspond
to light reflections, which can be easily suppressed.

Once light reflections have been suppressed, 
specialized gradient maps are computed. The gradient in 

the spatial domain is calculated for every frame of the 
HSV. Since the snaxels of the right and left snakes are 
restricted to column-wise neighborhoods of movement, 
calculation of the gradient is performed using only the 
rows of a given frame in order to accent the horizontal 
edge information. A custom gradient map with gradients 
normal to the right vocal-fold edge is computed for the 
right snake, and a gradient map with gradients normal to 
the left vocal-fold edge is computed for the left snake.

Contour Embedding. In order to keep the right and left 
snakes attracted to each other in regions of the kymogram 
where the vocal folds are in contact, a new parameter,
snake intensity (snakeInt), is devised. After each iteration 
of the dynamic programming, the right and left snakes are 
embedded in the opposing snake's edge map as a salient 
edge with intensity values between 0 and 255. This 
effectively bounds the right snake between the right 
vocal-fold edge and the left snake, and the left snake is 
bounded by the right vocal-fold edge and the right snake.
This can prevent the right and left snakes from moving 
across one another during deformation.

Human Data. Fourteen vocally-normal speakers (7 men 
and 7 women between 22 and 29 years of age) have been 
recorded using with a Phantom V.7.1 (Vision Research, 
Inc., Wayne, NJ) monochromatic camera (16,000 fps, 
320x320 pixels, 12-bit depth) connected to a 70 rigid 
laryngeal endoscope and a 300-W xenon light source.
Each speaker produced the vowel /i/ in seven phonatory 
conditions, varying in register, pitch and loudness.
Thousand-frame tokens of sustained phonation have been 
extracted from each recording to yield a total of 98 HSV 
samples.

III. RESULTS AND DISCUSSION

Snake Parameter Adjustment. In early works on snakes, 
the parameters α and β were shown to be sensitive 
parameters used to weight the snake model's continuity 
and rigidity, respectively. In the time-delayed discrete
dynamic programming algorithm, α and β are not as 
sensitive as their classical counterparts [7]. For all results 
obtained in this paper, we have set α = 10 and β = 3. The 
only parameters that have been adjusted were the 
snakeInt and the column-wise neighborhood size 
(colSize). colSize and snakeInt are adjusted twice per 
recording, once in order to initialize the right and left 
snakes, and one additional time for the automated
segmentation stage.

Figs. 3 and 4 show the values of colSize and snakeInt
used for the initialization and segmentation stages for 
female and male subjects, respectively. Fig. 5 provides an 
example of (A) the initial positions of the right and left 
snakes in the toolbox, (B) the deformation results for the 
initial kymogram, and (C) phases of the opening cycle 
with the deformation results (the white contours along the 



glottis) presented in the spatial domain of the HSV for a 
female subject.

Fig. 3: colSize and snakeInt for 49 female subjects.

Fig. 4: colSize and snakeInt for 49 male subjects.

Fig. 5: (A) Initialization of the right and left snakes, 
(B) deformation results of right and left snakes for the 
initial kymogram, (C) three phases of the opening cycle 
with right and left snakes presented in spatial domain.

Validity and Reliability. From the 98 samples in the 
dataset, 96 samples were successfully segmented using 
the temporal paired snakes, and 2 presented difficulties 
due to poor lighting. That is an overall reliability of 98%, 
which is a highly-encouraging result. In all HSV samples, 
most DKG images were analyzed without gross errors,
i.e. divergence of the snake from the correct edge by 
more than one pixel, usually due to attraction to the 
wrong nearby edge. Of the 96 successfully-segmented 
samples, 78 exhibited at least one DKG image with at 
least one gross error, 59 of which (76%) were due to a 
failure of the right and left snakes to attract to each other 
near the commissures, mainly the posterior commissure.
Those instances can be easily corrected by introducing an 

adaptively sized column-wise neighborhood and 
appropriate pre-processing when automating the method.

Accuracy. In all HSV samples, most DKG images
exhibited sub-pixel accuracy of segmentation. Of the 18 
samples free of gross errors, 1 had no single DKG image
with a snake differing from the target edge, and 17 
exhibited at least one DKG image containing an instance 
of an error up to ±1 pixel.

IV. CONCLUSION

The proposed paired temporal snake algorithm 
exploits the HSV temporal resolution for obtaining a 
segmentation of the glottis by following a set of snake-
deformation rules. The snake deformation strategy 
employs a dynamic programming algorithm, in which the 
optimization of the snake-energy function decreases 
monotonically with respect to the asymptotic rate of 
growth of the algorithm, and thus the global convergence 
is guaranteed. The development of the algorithm is still in 
progress, to be extended to a fully-automatic method for 
segmentation of the glottis from HSV. This algorithm is 
reliable and fast, yet highly scalable in terms of the 
degrees of parallelism that can be exploited in the future.
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